A SIMPLE METHOD FOR THE SYNTHESIS OF

γ -FUNCTIONALIZED VINYL AND ALLYL SULFONES

Carmen Nájera,* Alfonso Pérez-Pinar, and José M. Sansano

Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Alicante, 03690 Alicante, Spain

(Received in UK 4 April 1991)

Abstract: The synthesis of γ -functionalized vinyl sulfones 3 have been carried out directly starting from dibromides 2 derived from allyl sulfones 1 by reaction with different nucleophiles. The process is stereoselective affording compounds 3 with E configuration except in the case of methallylic derivatives. The regioisomeric γ -functionalized allyl sulfones 4 were obtained from dibromides 2 or from vinyl sulfones 3, with Z configuration, except when triphenylphosphine was used as nucleophile, in this case the corresponding (E)-vinylphosphonium bromide 4al was obtained.

Vinyl and allyl sulfones are the most synthetically useful sulfones in Organic Chemistry.¹ The reactivity of vinyl sulfones^{1,2} is based in three types of general reactions: (a) Michael type additions, (b) cycloadditions reactions, and (c) formation of vinylic anions. In the case of allyl sulfones¹ the most interesting reactions are: (a) formation of allylic anions, (b) nucleophilic or radical substitution of the arylsulfonyl group, and (c) allylic 1,3-rearrangement. In connection with our studies on carbanions derived from vinyl sulfones³ we were interested in the synthesis of γ -functionalized vinyl I and also in their regioisomeric allyl sulfones II. The general methods described for the synthesis of this type of compounds are based on the nucleophilic substitution of: (1) 3-bromo- or 3-chloro-alkenyl aryl sulfones⁴ and (2) allylidene disulfones.⁵ The first method is more convenient for the synthesis of the corresponding sulfones I and II since the second one works only with α -alkylated acyclic derivatives.

Arso, X ArSO, X

Ι

II

We now report a simpler and more convenient method for the synthesis of γ -functionalized vinyl and allyl sulfones of the type I and II respectively, starting from the dibromo derivatives of allyl sulfones based on the in situ generation of 3-bromo-1-alkenyl *p*-tolyl sulfones.⁴

RESULTS AND DISCUSSION

The reaction of dibromo derivatives 2, easily prepared by addition of bromine in carbon tetrachloride to allyl sulfones 1, with different nucleophilic reagents afforded γ -functionalized vinyl sulfones 3 in good yields (Scheme 1 and Table 1). The process takes place, in general, with two equivalents of the nucleophile under different reaction conditions depending on the nature of both reactants and is steroselective affording the corresponding *E* isomers except in the case of methallylic derivatives of 2b. In general, the in situ generated γ -tosylated allyl bromides 3 (X=Br) suffered the corresponding nucleophilic displacement S_N2^{4a} before their isomerization⁷ to the corresponding unwanted vinyl bromides 4 (X=Br) took place.

a: $R^1 = R^2 = R^3 = H$ b: $R^1 = R^3 = H$, $R^2 = Me$ c: $R^1 = R^2 = H$, $R^3 = Me$ d: $R^1 - R^3 = -(CH_2)_3$, $R^2 = H$

$$[X = Br, OMe, OAc, OH, NHPh, NO, N$$

Scheme 1

When sodium methoxide was used as nucleophile at room temperature only the dehydrobromination reaction was observed affording the corresponding γ -tosylated allylic bromides **3aa-3da** (Table 1, entries 1-4). Compound **3aa** was obtained impurified by its regioisomer (Z)-**4aa** and not by its stereoisomer (Z)-**3aa**

as it has been described for the dehydrobromination of 1,2-dibromo-3-(phenylsulfonyl)propane with triethylamine⁸ (see below). The corresponding methoxy derivatives **3ab-3db** have been achieved using one equivalent of sodium methoxide under methanol reflux (Table 1, entries 5-7). When compound 2a was allowed to react with an excess of sodium methoxide the *cis*-cyclopropyl sulfone 5⁹ was obtained (Scheme 2 and Table 1, entry 8). Compound 5 results from the Michael addition of methoxide anion to the in situ generated (*E*)-3-bromo-1-tosyl-1-propene (**3aa**) following the cyclopropanation reaction¹⁰. This type of sulfones has been used as homoenolate precursors¹¹ being our method more direct than the described¹² for the synthesis of such type of compounds.

The acetates derivatives **3ac-3dc** were prepared by reaction of compounds 2 with two equivalents of sodium acetate in DMSO (Table 1, entries 9-12). In the case of sodium nitrite the reaction with dibromide 2a failed and it was necessary to start from the monobromide **3aa**, which reacted with this nucleophile in anhydrous conditions to yield alcohol **3ad** (Table 1, entry 13). This product arises probably from the *O*-allylation of the nitrite anion and further hydrolysis of the allyl nitrite during the work-up.

As nitrogen-containing nucleophiles have been tested amines, sodium azide, and potassium cyanate. With three or four equivalents of amines such as aniline or morpholine in dichloromethane or THF, the secondary or tertiary γ -tosylated allylic amines **3ae**, **3ce** or **3af-3df** were respectively obtained (Table 1, entries 14-19). In order to prepare a quiral amine derivative, potentially useful in asymmetric induction, (*L*)-(-)-ephedrine was allowed to react with **2a** at room temperature giving the allylic amine **3ag** together with the morpholine derivatives **6**. Products **3ag** and **6** can be separated by column chromatography and products **6** can be exclusively obtained when the reaction was carried out under dichloromethane reflux (Scheme 3 and Table 1, entries 20 and 21). Compounds **6** were obtained as a mixture of diastereoisomers **6a** and **6b** in a 3/1 molar ratio (¹H-NMR) as result of the intramolecular Michael addition of the hydroxy group from ephedrine to the vinyl sulfone. The mayor isomer **6a** was obtained in pure form by recrystallization and its configuration was assigned according to the positive NOE effect observed between 2-H and 6-H.

	Starting		Reaction condi	tions			Product	
Entry	compound	Nu (equiv.)	Solvent	T (°C)	Time	цо.	×	Yield (%)*
1	28	NaOMe (1)	МеОН	Ħ	ld	3aa ^b	В	78
2	2b	NaOMe (1)	MeOH	Ħ	ld	3ba°	Br	984
3	2c	NaOMe (0.6)	MeOH	Ľ	ld	Зса	Br	50
4	2d	NaOMe (3)	MeOH	Ħ	30 min.	3da	Br	98
S	2a	NaOMe (1)	MeOH	reflux	Q	3ab	OMe	95
9	2c	NaOMe (1)	MeOH	reflux	Ъζ	3cb	OMe	75
7	2 d	NaOMe (1)	MeOH	reflux	Ъζ	3db	OMe	69
œ	2a	NaOMe (4)	MeOH	reflux	РĹ	N)	•	61
6	2a	NaOAc (2)	°,	Ľ	ld	3ac ^r	ΟΑς	¹ 06
10	2b	NaOAc (2)	°,	ť	Id	3bc°	OAc	⁵ 06
11	2c	NaOAc (2)	DMSO	100	ld	3cc ^í	OAc	60
12	2d	NaOAc (2)	DMSO	100	3d	3dc	OAC	51
13	3aa	$NaNO_2$ (2)	DMSO	Ħ	3h	3ad ^r	НО	87
14	2a	PhNH ₂ (4)	CH2Cl2	reflux	2d	3ae	NHPh	90¢
15	2c	PHNH ₂ (3)	THF	reflux	ld	3ce	hehn	62
							(
16	2a	Morpholine (3)	CH ₂ Cl ₂	reflux	4h	3af	\hat{z}	66

Table 1. Synthesis of γ -Functionalized Vinyl Sulfones 3.

÷
õ
3
[]
abl
F

98 ⁴	97	8	46 80k	29	1 06	78	8	37	61	40 ^m
Ç	Ç			ź	ñ	N ₃	N ₃	J J J J J J J J J J J J J J J J J J J	Ts	CH(CO ₂ Me) ₂
3bf	3cf	3df	3ag K	3ah	3bh°	3ch	3dh	3ai	3 aj	3ak
ld	ld	2d	1d 1d	3h 3h	ld	ld	ld	ld	ld	Id
reflux	reflux	reflux	ц	LI LI	t	ц	ц	reflux	reflux	t
CH ₂ Cl ₂	CH ₂ Cl ₂	CH ₂ Cl ₂	CH,CI,		۴ı	DMF	ů,	۳,	DMF	THF
Morpholine (3)	Morpholine (3)	Morpholine (3)	Ephedrine (4) ¹ Enhedrine (4) ¹	NaN ₃ (2)	NaN ₃ (2)	NaN ₃ (1.75)	NaN ₃ (2)	KNCO (2)	NaTs (2)	NaCH(CO ₂ Me) ₂ (2) ¹
2b	30	2d	2a 2a	2a	2b	20	2d	2a	2a	2a
17	18	19	20	57	23	24	25	26	27	28

*Based on starting dibromde 2, after column chromatography. *A 15% of compound (Z)-4aa has been also obtained. *Mixture of Z/E-stereoisomers (1/1), "fisolated crude pure compound ('H-NMR, tic). *A 1:1 mixture of CH₂Cl₂/DMSO was used. 'See reference 6. *See reference 3c. ^MMixture of Z/E-stereoisomers (1/2). ^PPrepared from the corresponding chlorhydrate. ¹ A 40% of compound 6 was also obtained. ¹Mixture of diastereoisomers all *cis/trans*:3/1. ¹Prepared from dimethyl malonate and sodium hydride in THF. ^aA 25% of compound 7 was also obtained.

Scheme 3

The corresponding γ -tosylated allylic azides **3ah-3dh** (Table 1, entries 22-25) were prepared by treatment of dibromides 2 with two equivalents of sodium azide in CH₂Cl₂-DMSO or DMF as solvents. In the case of compound **3ch**, 1.75 equivalents of nucleophile have to be used in order to avoid its isomerization to the allyl sulfone **4ch** (see below).

4ch

The last nitrogen-containing nucleophile used was potassium cyanate, which by reaction with dibromide 2a in a mixture of CH_2Cl_2 -DMSO afforded the cyanuric acid derivative 3ai (Table 1, entry 26), probably formed by reaction of the intermediate allylic isocyanate with potassium cyanate (Scheme 4).

Disulfone $3aj^{13}$ was prepared by reaction of 2a with two equivalents of sodium p-toluenesulfinate

under DMF reflux (Table 1, eftry 27). This class of compounds has been used in the synthesis of electrondeficient dienes by Knoevenagel-type condensation.¹⁴

Finally, sodium dimethyl malonate reacted with dibromide 2a to give a mixture of products 3ak and 7 in 1.6:1 molar ratio resulting from mono- and diallylation of dimethyl malonate (Scheme 5 and Table 1, entry 28). These products can be easily separated by column chromatography. Attempts to avoid the formation of compound 7 changing the addition order (2a over sodium dimethyl malonate) exclusively gave compound 8 (40% yield, Scheme 5).

From these results we conclude that this method constitutes an easy way to prepare γ -functionalized vinyl sulfones 3 starting from dibromides derived from allyl sulfones, avoiding the isolation of γ -tosylated allyl bromides when the nucleophile is basic enough to carry out the in situ dehydrobromination reaction. Only in the case of sodium nitrite the reaction has to be carried out with the allylic bromide 3aa. The need of the corresponding monobromides when poor basic nucleophiles have to be used prompted us to study the elimination reaction specially for compound 2a (see above). Thus, we studied the reaction of dib...mide 2a with one equivalent of different bases (Scheme 6 and Table 2). The reaction with triethylamine or sodium methoxide gave the same mixture of regioisomers 3aa and 4aa in 3:1 molar ratio (from ¹³C- and ¹H-NMR spectra of the crude reaction mixture). The Z-isomer of 3aa was no detected as it has been previously

	React	ion conditi	ons	Product			
Base	Solvent	T (°C)	Time	no. Yield			
Et₃N	THF	0	3h	3aa + 4aa ^b	87		
NaOMe	MeOH	rt	1 d	3aa + 4aa ^b	98		
Morpholine	CH ₂ Cl ₂	reflux	1d	3aa	74		
NaN ₃	_c	rt	2d	2a + 3aa + 3ah ^d	100		
NaOAc	DMSO	rt	1d	3 aa	82		

Table 2. Reaction of Dibromide 2a with Bases.

*Based on compound 2a. Isolated crude product. *Molar ratio : 3/1. *A 1/1 mixture of CH₂Cl₂/DMSO was used. *Molar ratio : 2/1/3.

reported.⁸ Morpholine and sodium acetate gave regioselectively compound **3aa** but sodium azide afforded a mixture of unreacted **2a**, **3aa**, and **3ah**. Consequently the best bases, tried by us, for the synthesis of **3aa** are morpholine and sodium acetate, under these conditions no isomerization to vinyl bromide **4aa** was observed.

The synthesis of thermodynamically more stable¹⁵ γ -functionalized allyl sulfones of the type II (e.g. compounds 4) was tried to carried out treating dibromides 2 with an excess of nucleophile or by isomerization of vinyl sulfones 3 (Scheme 7 and Table 3). The direct preparation of compounds 4 from 2 took place with sodium methoxide and sodium azide affording the bromide 4ca and the vinyl azides 4ah, and 4ch respectively (Table 3, entries 1-3). Triethylamine also gave the vinyl bromide 4aa when starting from compound 2a (Table 3, entry 4). The isomerization of vinyl to allyl sulfones was only observed when acetate 3ac was treated with triethylamine affording the vinyl acetate 4ac. The stereochemistry of compounds 4 was

exclusively Z for R=H and mainly Z for R=Me.¹⁶ We assigned the most shielded signal of the methyl groups in the ¹-H-NMR spectra of compounds 4 (R=Me) to the Z isomer and not to the E as it was previously made.⁴⁴ Finally, triphenylphosphine reacted with monobromide 3aa in toluene reflux to afford

Starting Nu or Base			Reaction conditions				Product		
Entry	compound	(equiv.)	Solvent	T (°C)	Time	no.	х	Yield %*	
1	2c	NaOMe (2)	MeOH	rt	12h	4ca ^b	Br	79	
2	2a	NaN ₃ (2.5)	_c	rt	1d	4ah	N_3	79	
3	2c	NaN ₃ (4)	_c	reflux	1d	4ch ^d	N_3	32	
4	2a	Et ₃ N (1.5)	THF	rt	1d	4aa	Br	78°	
5	3ac	Et ₃ N (1)	CH ₂ Cl ₂	rt	2d	4ac	OAc	86	
6	3aa	PPh ₃ (1)	PhCH ₃	reflux	1 d	4al	PPh ₃	99	

Table 3. Synthesis of γ -Functionalized Allyl Sulfones 4.

"Based on starting compound. Isolated compound after purification. "Mixture 7/1 of Z/E stereoisomers. "A 1/1 mixture of CH₂Cl₂/DMSO was used. "Mixture 10/1 of Z/E stereoisomers. "A 25% of 3aa was also obtained.

regio and stereoselectively the vinylphosphonium salt 4al with E configuration. This compound can be presumably used in the synthesis of substituted cyclopentadienes via a [3+2] anulation process.¹⁷

4al

Studies are also in course on the use of these γ -functionalized vinyl and allyl sulfones as precursors of functionalized vinylic and allylic anions of the type III and IV.

EXPERIMENTAL

General. Melting points were obtained with a Reichert thermovar apparatus and are uncorrected. Spectra were recorded with the following instruments: IR, Pye Unicam SP3-200; NMR, Bruker AC-300, recorded in CDCl₃ with TMS as internal standard, ¹³C NMR assignments were done on the basis of DEPT experiments ; MS, Hewlett-Packard 5988A (EI, 70eV). $[\alpha]_D$, Optical Activity AA-100 polarimeter. Microanalyses were performed by the Microanalyses Service of the University of Zaragoza. T.1.c. analyses were carried out on Merck Kieselgel 60F-254 plates (visualization by UV) and column chromatography was performed on Merck Kieselgel 60 (70-230 mesh). Solvents were dried as usually.

Synthesis of Allyl Sulfones Dibromides 2. General Procedure.¹ To a solution of allyl sulfone 1^{3e} (45 mmol)

in CCl₄ (25 ml) was droped a solution of bromine (2.5 ml, 50 mmol) in CCl₄ (25 ml). After 4h stirring the precipitate¹⁸ was filtered off, washed with CCl₄ and purified by recrystallization yielding compounds 2.

1,2-Dibromo-3-tosylpropane (2a): 90%; mp 86-87°C (CH₂Cl₂/hexane); ν_{max} (CHCl₃) 1300 and 1140 cm⁻¹ (SO₂); $\delta_{\rm H}$ 2.46 (s, 3H, CH₃), 3.60 (dd, J=6.5, 15.0 Hz, 1H, 1xCH₂S), 3.78 (dd, J=6.5, 11.0Hz, 1H, 1xCH₂Br), 3.96 (m, 2H, 1xCH₂S and 1xCH₂Br), 4.53 (m, 1H, CHBr), 7.39, and 7.82 (2d, J=8.0Hz, 4H, ArH); $\delta_{\rm C}$ 21.59 (CH₃), 36.49 (CH₂Br), 40.91 (CHBr), 61.90 (CH₂S), 128.09, 130.06, 135.88, and 145.45 (ArC); *m*/z 358 (*M*⁺+4, 3%), 356 (*M*⁺+2, 6), 354 (*M*⁺, 3), 277 (24), 275 (23), 201 (26), 156 (45), 155 (41), 139 (43), 121 (31), 119 (32), 92 (47), 91 (100), 89 (20), 65 (50), and 41 (20). Anal. Calcd. for C₁₀H₁₂Br₂S: C, 33.73; H, 3.40. Found: C, 33.94; H, 3.48.

1,2-Dibromo-2-methyl-3-tosylpropane (2b): 99%; R_f 0.68 (hexane/ether:1/2); ν_{max} (film) 1300 and 1140 cm⁻¹ (SO₂); $\delta_{\rm H}$ 2.16 (s, 3H, CH₃CBr), 2.45 (s, 3H, CH₃Ar), 3.79, 3.95 (2d, J=14.5Hz, 2H, CH₂S), 4.13 (s, 2H, CH₂Br), 7.37, and 7.83 (2d, J=8.3Hz, 4H, ArH); $\delta_{\rm C}$ 21.60 (CH₃Ar), 30.50 (CH₃CBr), 43.11 (CH₂Br), 58.37 (CBr), 65.17 (CH₂S), 127.89, 130.00, 137.50, and 145.21 (ArC); m/z 372 (M^+ +4, 1%), 370 (M^+ +2, 1), 368 (M^+ , 1), 291 (34), 289 (33), 215 (28), 157 (88), 155 (36), 139 (21), 135 (41), 133 (41), 92 (51), 91 (100), 65 (46), 55 (34), and 53 (24).

(erythro/threo)-2,3-Dibromo-1-tosylbutane (2c): 82%; mp 66-68°C (CH₂Cl₂/hexane); ν_{max} (CHCl₃) 1300 and 1140 cm⁻¹ (SO₂); $\delta_{\rm H}$ 1.75, 1.80 (2d, $J_{\rm erythro}$ =6.6Hz, $J_{\rm threo}$ =6.3Hz, 3H, CH₃CH), 2.46 (s, 3H, CH₃Ar), 3.65, 3.92 (2m, 2H, CH₂S), 4.49 (m, 2H, 2xCHBr), 7.39, and 7.82 (2d, J=8.0Hz, 4H, ArH); $\delta_{\rm C}$ 21.63 (CH₃Ar), 23.09 (CH₃CH-*threo*), 23.53 (CH₃CH-*erythro*), 48.71, 51.33 (2xCHBr-*erythro*), 49.04, 50.20 (2xCHBr-*threo*), 61.61 (CH₂-*erythro*), 62.05 (CH₂-*threo*), 128.11, 128.20, 130.04, 130.05, 135.92, and 145.41 (ArC); m/z 372 (M^+ +4, 1%), 370 (M^+ +2, 1), 368 (M^+ , 1), 291 (34), 289 (33), 215 (28), 157 (88), 156 (24), 155 (36), 139 (21), 135 (41), 133 (41), 92 (51), 91 (100), 65 (46), 55 (34), and 53 (24). Anal. Calcd. for C₁₁H₁₄Br₂O₂S: C, 35.70; H, 3.81. Found: C, 36.05; H, 3.90.

 $(1R^{*}, 2R^{*}, 3R^{*})$ -1,2-Dibromo-3-tosylcyclohexane (2d): 89%; mp 142-143°C (CH₂Cl₂/hexane); ν_{max} (CHCl₃) 1300 and 1140cm⁻¹ (SO₂); δ_{H} 1.70-2.15 (m, 6H, 3xCH₂), 2.46 (s, 3H, CH₃), 3.83 (m, 1H, CHS), 4.69 (m, 2H, 2xCHBr), 7.38 and 7.81 (2d, J=8.0Hz, 4H, ArH); δ_{C} 19.61, 20.64, 27.17 (3xCH₂), 21.61 (CH₃), 47.28, 52.79 (2xCHBr), 61.09 (CHS), 129.04, 129.81, 134.57, and 145.12 (ArC); m/z 317 (M^{+} -79, <1%), 315 (M^{+} -81, <1), 157 (15), 92 (21), 91 (38), 81 (18), 80 (15), 79 (100), 77 (21), 65 (32), and 53 (11). Anal. Calcd. for C₁₃H₁₆Br₂O₂S: C, 39.42; H, 4.07. Found: C, 39.19; H, 4.01.

Synthesis of γ -Functionalized Vinyl Sulfones 3 and Derivatives. General Procedure. A mixture of dibromide 2 (0.5 mmol) and nucleophile¹⁹ (see Tables 1 and 2) in the corresponding solvent (ca. 5 ml) was stirred at the temperature and for the time indicated on Tables 1 and 2. The reaction was followed by t.l.c. and after extractive work-up compounds 3, 5, 6, 7, and 8 were isolated and purified by column chromatography or and by recrystallization.

(E)-3-Bromo-1-tosyl-1-propene (3aa): R_{f} 0.41 (hexane/ether:1/2); ν_{max} (film) 3020, 1620, 960 (CH=C), 1300, and 1140 cm⁻¹ (SO₂); $\delta_{\rm H}$ 2.44 (s, 3H, CH₃), 4.00 (d, J=7.0Hz, 2H, CH₂), 6.57 (d, J=14.5Hz, 1H, CHS), 6.98 (dt, J=14.5, 7.0Hz, 1H, CHCH₂), 7.35, and 7.67 (2d, J=8.0Hz, 4H, ArH); $\delta_{\rm C}$ 21.54 (CH₃), 27.32 (CH₂), 127.79, 130.01, 136.54, 144.79 (ArC), 134.18, and 138.87 (CH=CH); *m/z* 276 (*M*⁺+2, 9%), 274 (*M*⁺, 8), 155 (10), 139 (100), 131 (21), 92 (11), 91 (50), and 65 (26).

(Z,E)-3-Bromo-2-methyl-1-tosyl-1-propene (3ba): $R_{\rm f}$ 0.57 (hcxane/ether: 1/2); $\nu_{\rm max}$ (film) 3030, 1610 (CH=C), 1300, and 1140 cm⁻¹ (SO₂); $\delta_{\rm H}$ 2.02, 2.26 (2s, 3H, CH₃CCH₂), 2.44 (s, 3H, CH₃Ar), 3.88, 4.57 (2s, 2H, CH₂), 6.18, 6.47 (2s, 1H, CHS), 7.35, 7.37, 7.78, and 7.82 (4d, J=8.0Hz, 4H, ArH); $\delta_{\rm c}$ 16.16, 23.37 (CH₃CCH₂), 21.48, 21.52 (CH₃Ar), 27.11, 36.47 (CH₂), 127.19, 127.38, 129.84, 129.81, 138.24, 144.44, 144.55 (ArC), 128.28, 129.61, 148.75, and 149.39 (CH = CCH₂).

(E)-3-Bromo-1-tosyl-1-butene (3ca): $R_f 0.52$ (hexane/ether:1/2); ν_{max} (film) 3030, 1610, 960 (CH=C), 1300, and 1135 cm⁻¹ (SO₂); $\delta_{\rm H}$ 1.80 (d, J=6.7Hz, 3H, CH₃CH), 2.44 (s, 3H, CH₃Ar), 4.69 (m, 1H, CHBr), 6.49 (d, J=14.8Hz, 1H, CHS), 7.02 (dd, J=14.8, 6.7Hz, 1H, CHCHS), 7.36, and 7.77 (2d, J=8.1Hz, 4H, ArH); $\delta_{\rm c}$ 21.43 (CH₃Ar), 24.12 (CH₃CH), 42.78 (CHBr), 127.59, 129.85, 136.50, 144.61 (ArC), 130.73, and 144.24 (CH=CH).

3-Bromo-3-tosyl-1-cyclohexene (3da): mp 96-97 °C (hexane/ether); ν_{max} (CHCl₃) 3010, 1630 (CH=C), 1300, and 1140 cm⁻¹ (SO₂); $\delta_{\rm H}$ 1.75-2.45 (m with s at 2.44, 9H, 3xCH₂ and CH₃), 4.86 (m, 1H, CHBr), 7.06 (m, 1H, CHCS), 7.34, and 7.44 (2d, J=8.0Hz, 4H, ArH); $\delta_{\rm c}$ 18.14, 22.50, 30.99 (3xCH₂), 21.53 (CH₃), 43.84 (CHBr), 128.12, 129.85, 135.27, 144.61 (ArC), 135.42, and 142.15 (C=CHCH₂); m/z 316 (M⁺ +2, <1%), 314 (M⁺, <1), 139 (100), 91 (11), 79 (15), and 77 (11). Anal. Calcd. for C₁₃H₁₃BrO₂S: C, 49.53; H, 4.80. Found: C, 50.02; H, 4.85.

(E)-3-Methoxy-1-tosyl-1-propene (3ab): mp 81-82 °C (hexane/CH₂Cl₂); ν_{max} (CHCl₃) 3050, 1620, 940 (CH=C), 1300, and 1140 cm⁻¹ (SO₂); δ_{H} 2.43 (s, 3H, CH₃Ar), 3.36 (s, 3H, CH₃O), 4.11 (dd, J=3.5, 2.5Hz, 2H, CH₂O), 6.56 (dt, J=15.0, 2.5Hz, 1H, CHS), 6.91 (dt, J=15.0, 3.5Hz, 1H, CHCH₂), 7.30, and 7.74 (2d, J=8.0Hz, 4H, ArH); δ_{c} 21.55 (CH₃Ar), 58.84 (CH₃O), 70.01 (CH₂O), 127.68, 129.86, 137.29, 144.35 (ArC), 130.62, and 141.66 (CH=CHS); m/z 226 (M^+ , 26%), 183 (21), 149 (26), 139 (39), 91 (48), 71 (100), 65 (32), and 41 (22). Anal. Calcd. for C₁₁H₁₄O₃S: C, 58.38; H, 6.24. Found: C, 56.53; H, 6.18.

(E)-3-Methoxy-1-tosyl-1-butene (3cb): R_f 0.45 (hexane/ether:1/2); ν_{mx} (film) 3020, 1620, 960 (CH=C), 1300, and 1140 cm⁻¹ (SO₂); δ_{H} 1.27 (d, J=6,5Hz, 3H, CH₃CO), 2.43 (s, 3H, CH₃Ar), 3.29 (s, 3H, CH₃O), 3.96 (m, 1H, CHO), 6.52 (dd, J=15.0, 1.3Hz, 1H, CHS), 6.85 (dd, J=15.0, 4.9Hz, 1H, CHCHO), 7.34, and 7.77 (2d, J=8.0Hz, 4H, ArH); δ_{C} 19.59 (CH₃CO), 21.50 (CH₃Ar), 56.72 (CH₃O), 75.09 (CHO), 127.61, 129.84, 137.24, 144.34 (ArC), 130.48, and 146.12 (CH=CH); m/z 240 (M^{*} ,5%), 140 (18), 139 (80), 129 (10), 91 (100), 89 (27), 85 (76), 77 (18), 65 (80), and 59 (57).

3-Methoxy-1-tosyl-1-cyclohexene (3db): R_f 0.53 (hexane/ether:1/2); ν_{max} (film) 3020, 1630, 810 (CH=C), 1300, and 1140 cm⁻¹ (SO₂); $\delta_{\rm H}$ 1.55, 1.83, 2.14 (3m, 6H, 3xCH₂), 2.43 (s, 3H, CH₃Ar), 3.42 (s, 3H, CH₃O), 3.92 (m, 1H, CHO), 7.01 (m, 1H, CHCHO), 7.33, and 7.74 (2d, J=8.1Hz, 4H, ArH); $\delta_{\rm C}$ 19.15, 22.93, 26.95 (3xCH₂), 21.51 (CH₃Ar), 56.43 (CH₃O), 74.10 (CHO), 128.16, 129.73, 135.67, 144.32 (ArC), 135.50, and 142.80 (CH=CCH₂); m/z 267 (M^+ + 1, 1%), 266 (M^+ , 7), 140 (14), 139 (18), 127 (21), 111 (100), 110 (28), 95 (10), 91 (57), 89 (12), 83 (11), 81 (15), 79 (34), 77 (30), 71 (20), 67 (14), 65 (60), 63 (15), 55 (22), 53 (19), 51 (16), 45 (11), and 41 (19).

(cis)-1-Methoxy-2-tosylcyclopropane (5): mp 71-72°C (hexane/ether); ν_{max} (CHCl₃) 1300 and 1140 cm⁻¹ (SO₂); $\delta_{\rm H}$ 1.41 (m, 1H, H_b), 1.59 (q, J=6.7Hz, 1H, H_a), 2.45-2.53 (m with s at 2.45, 4H, CH₃ and CHS), 3.25 (s, 3H, CH₃O), 3.81 (m, 1H, CHO), 7.36, and 7.78 (2d, J=8.1Hz, 4H, ArH); $\delta_{\rm c}$ 14.25 (CH₂), 21.55 (CH₃), 39.09 (CHS), 58.71 (CH₃O), 59.48 (CHO), 127.44, 129.85, 137.43, and 144.43 (ArC); *m/z* 211 (*M*⁺-15, 2%), 91 (63), 89 (28), 71 (100), 65 (75), 63 (29), and 41 (37). Anal. Calcd. for C₁₁H₁₄O₃S: C, 58.38; H, 6.24. Found: C, 58.07; H, 6.33.

(E)-3-Tosyl-2-propenyl acetate (3ac):⁶ R_f 0.31 (hexane/ether:1/2); ν_{max} (film) 3040, 1630, 945 (CH=C), 1730 (C=O), 1300, and 1140 cm⁻¹ (SO₂); δ_{μ}^{6} 2.10 (s, 3H, CH₃CO), 2.45 (s, 3H, CH₃Ar), 4.78 (dd, J=4.0, 2.0Hz, 2H, CH₂), 6.58 (dt, J=15.0, 2.0Hz, 1H, CHS), 6.96 (dt, J=15.0, 4.0Hz, 1H, CHCH₂), 7.36, and 7.78 (2d, J=8.0Hz, 4H, ArH); δ_{c} 20.39 (CH₃CO), 21.43 (CH₃Ar), 61.28 (CH₂), 127.65, 129.88, 136.76, 144.54 (ArC), 131.46, and 138.74 (CH=CHS); m/z 254 (M^+ , 5%), 212 (34), 183 (17), 157 (13), 139 (52), 119 (13), 99 (78), 92 (48), 91 (97),

89 (16), 77 (17), 65 (55), 63 (17), and 43 (100).

(Z,E)-2-Methyl-3-tosyl-2-propenyl acetate (3bc): R_f 0.51 (hexane/ether:1/5); ν_{max} (film) 3020, 1625 (CH=C), 1725 (C=O), 1300, and 1140 cm⁻¹ (SO₂); δ_{H} 1.90, 2.09, 2.10, 2.13 (4s, 6H, CH₃CO and CH₃CCO), 2.45 (s, 3H, CH₃Ar), 4.55, 5.25 (2s, 2H, CH₂), 6.24, 6.39 (2s, 1H, CHS), 7.36, 7.80, and 7.82 (3d, J=8.0Hz, 4H, ArH); δ_{C} 14.44, 20.37, 20.41, 21.27, 21.42 (3xCH₃), 61.20, 65.95 (CH₂), 125.98, 127.03, 127.15, 128.02, 129.69, 138.24, 138.69, 144.15, 144.28, 149.16, and 149.85 (ArC and CH=C).

(E)-*I*-Methyl-3-tosyl-2-propenyl acetate (3cc):⁶ R_f 0.43 (hexane/ether:1/2); ν_{max} (film) 3040, 1630, 950 (CH=C), 1720 (C=O), 1300, and 1140 cm⁻¹ (SO₂); δ_{H}^{6} 1.36 (d, J=6.5Hz, 3H, CH₃CH), 2.05 (s, 3H, CH₃CO), 2.43 (s, 3H, CH₃Ar), 5.51 (m, 1H, CHCH₃), 6.41 (dd, J=15.0, 1.5Hz, 1H, CHS), 6.80 (dd, J=15.0, 4.5Hz, 1H, CHCO), 7.25, and 7.67 (2d, J=8.0Hz, 4H, ArH); δ_{C} 19.23, 20.75, 21.41 (3xCH₃), 67.78 (CHO), 127.61, 129.83, 136.85, 144.47 (ArC), 130.59, 143.55 (CH=CHS), and 169.42 (C=O); m/z 268 (M⁺, 17%), 226 (25), 209 (14), 183 (56), 157 (17), 139 (81), 113 (100), 92 (26), 91 (68), 89 (13), 71 (53), 65 (34), and 43 (66).

3-Tosyl-2-cyclohexenyl acetate (3dc): R_f 0.36 (hexane/ether:1/2); ν_{max} (film) 3040, 1640 (CH=C), 1720 (C=O), 1300, and 1140 cm⁻¹ (SO₂); $\delta_{\rm H}$ 1.63, 1.84, 2.22 (3m, 6H, 3xCH₂), 2.07 (s, 3H, CH₃CO), 2.43 (s, 3H, CH₃Ar), 5.41 (m, 1H, CHO), 6.87 (dt, J=3.5, 2.0Hz, 1H, CHCO), 7.34, and 7.74 (2d, J=8.0Hz, 4H, ArH); $\delta_{\rm C}$ 18.93, 22.65, 26.91 (3xCH₂), 20.93 (CH₃CO), 21.50 (CH₃Ar), 67.14 (CHO), 128.19, 129.80, 135.34, 144.55 (ArC), 133.84, 144.46 (CH=CCH₂), and 170.11 (C=O); m/z 294 (M^+ , 16%), 251 (23), 140 (18), 139 (100), 97 (47), 95 (18), 92 (43), 91 (97), 89 (21), 79 (36), 78 (18), 77 (53), 67 (24), 65 (77), 63 (21), 53 (13), 51 (17), 43 (99), and 41 (14).

(E)-3-Tosyl-2-propen-1-ol (3ad).3c

(E)-Phenyl(3-tosyl-2-propenyl)amine (3ae): mp 108-109 °C (CH₂Cl₂/hexane); ν_{max} (CHCl₃) 3370 (NH), 3040, 1590, 940 (CH=C), 1300, and 1140 cm⁻¹ (SO₂); $\delta_{\rm H}$ 2.41 (s, 3H, CH₃), 3.95 (m, 2H, CH₂), 4.02 (br s, 1H, NH), 6.51 (d, J=8.0Hz, 2H, o-Ph), 6.55 (d, J=15.0Hz, 1H, CHS), 6.71 (t, J=7.5Hz, 2H, p-Ph), 7.02 (dt, J=15.0, 3.5Hz, 1H, CHCH₂), 7.15 (t, J=8.0Hz, m-Ph), 7.30, 7.72 (2d, J=8.0Hz, 4H, p-TolH); $\delta_{\rm C}$ 21.45 (CH₃), 44.22 (CH₂), 112.77, 118.07, 128.77, 146.78 (Ph), 127.45, 129.19, 137.25, 144.25 (p-TolC); m/z 287 (M⁺, 20%), 132 (80), 131 (17), 130 (100), 117 (11), 106 (53), 91 (16), 77 (40), 65 (18), and 51 (11). Anal. Calcd. for C₁₆H₁₇NO₂S: C, 66.87; H, 5.96; N, 4.87. Found: C, 67.24; H, 6 26; N, 4.63.

(E)-(1-Methyl-3-tosyl-2-propenyl)phenylamine (3ce): mp 113-114 °C (CH₂Cl₂/hexane); ν_{max} (CHCl₃) 3370 (NH), 3070, 1620, 960 (CH=C), 1300, and 1135 cm⁻¹ (SO₂); $\delta_{\rm H}$ 1.37 (d, J=6.8Hz, 3H, CH₃CH), 2.41 (s, 3H, CH₃Ar), 3 73 (br s, 1H, NH), 4.14 (m, 1H, CHN), 6.49 (m, 3H, o-Ph and CHS), 6.71 (t, J=7.5Hz, 1H, p-Ph), 6.97 (dd, J=15.0, 4 6Hz, 1H, CHCHN), 7.10 (t, J=7.8Hz, 2H, m-Ph), 7.28, and 7.68 (2d, J=8.1Hz, 4H, p-TolH); $\delta_{\rm c}$ 20.24 (CH₃CH), 21.34 (CH₃Ar), 49.72 (CHN), 113.36, 118.02, 129.01, 145.83 (Ph), 127.24, 129.63, 137.16, 144.05 (p-TolC), 130.29, and 147.80 (CH=CHS); m/z 301 (M⁺, 7%), 146 (55), 144 (39), 130 (100), 120 (61), 118 (21), 91 (80), 77 (68), and 65 (69). Anal. Calcd. for C₁₇H₁₉NO₂S: C, 67.74; H, 6.35; N, 4.65. Found: C, 67.18; H, 6.56; N, 4 69.

(E)-N-(3-Tosyl-2-propenyl)morpholine (**3af**): R_f 0.41 (ether); ν_{max} (film) 3040, 1620, 950 (CH=C), 1300, and 1140 cm⁻¹ (SO₂); $\delta_{\rm H}$ 2.44 (br s, 7H, CH₃ and 2xCH₂CH₂O), 3.16 (d, J=5.4Hz, 2H, CHCH₂N), 3.68 (deform. t, J=4.5Hz, 4H, 2xCH₂O), 6.57 (d, J=15.0Hz, 1H, CHS), 6.91 (dt, J=15.0, 5.4Hz, 1H, CHCH₂N), 7.35, and 7 77 (2d, J=8.0Hz, 4H, ArH); $\delta_{\rm C}$ 21.33 (CH₃), 53.31 (2xCH₂CH₂O), 58.08 (CHCH₂N), 66.50 (2xCH₂O), 127.44, 129.71, 137.10, 144.21 (ArC), 132.49, and 141.90 (CH=CHS); m/z 281 (M^+ , 6%), 126 (57), 100 (100), 96 (32), 95 (27),

91 (34), 68 (21), 65 (23), 56 (22), 42 (27), and 41 (20).

(Z,E)-N-(2-Methyl-3-tosyl-2-propenyl)morpholine (3bf): R_f 0.51 (ether); ν_{max} (film) 3020, 1615 (CH=C), 1280, and 1130 cm⁻¹ (SO₂); δ_{H} 1.96, 2.12 (2s, 3H, CH₃CCH₂), 2.37 (m, 4H, 2xCH₂CH₂O), 2.44 (s, 3H, CH₃Ar), 2.92, 3.48 (2s, 2H, CH₂C), 3.65 (m, 4H, 2xCH₂O), 6.33, 6.52 (2s, 1H, CHS), 7.35, and 7.80 (2d, J=7.8Hz, 4H, ArH); δ_{c} 16.00, 22.69 (CH₃CCH₂), 21.31 (CH₃Ar), 53.22, 53.28 (2xCH₂CH₂O), 57.15, 65.70 (CH₂CCH₃), 66.56, 66.66 (2xCH₂O), 126.84, 127.04, 129.56, 139.50, 143.92, 152.50, and 153.80 (ArC and C=CHS).

(E)-N-(1-Methyl-3-tosyl-2-propenyl)morpholine (3cf): R_f 0.43 (AcOEt); ν_{max} (film) 3030, 1610, 950 (CH=C), 1300, and 1140 cm⁻¹ (SO₂); δ_{H} 1.18 (d, J=6.7Hz, 3H, CH₃CH), 2.35-2.48 (m with s at 2.44, 7H, CH₃Ar and 2xCH₂N), 3.18 (q, J=6.7Hz, 1H, CHCH₃), 3.68 (t, J=4.4Hz, 2XCH₂O), 6.47 (d, J=15.2Hz, 1H, CHS), 6.91 (dd, J=15.2, 6.8Hz, 1H, CHCHN), 7.35, and 7.77 (2d, J=8.0Hz, 4H, ArH); δ_{C} 15.38 (CH₃CH), 21.32 (CH₃Ar), 49.76 (2xCH₂N), 60.03 (CHN), 66.76 (2xCH₂O), 127.37, 129.72, 137.21, 144.18 (ArC), 131.58, and 146.83 (CH=CHS); m/z 295 (M⁺, 13%), 280 (46), 140 (36), 139 (34), 124 (100), 114 (72), 108 (11), 91 (23), 65 (14), and 56 (14).

N-(3-Tosyl-2-cyclohexenyl)morpholine (3df): mp 145-146°C (CH₂Cl₂); ν_{max} (CHCl₃) 3010, 1620 (C=CH), 1300, and 1140 cm⁻¹ (SO₂); $\delta_{\rm H}$ 1.50, 1.80, 1.90, 2.20 (4m, 6H, 3xCH₂C), 2.45 (s, 3H, CH₃), 2.59 (m, 4H, 2xCH₂N), 3.35 (m, 1H, CHN), 3.71 (t, *J*=4.5Hz, 2xCH₂O), 7.05 (m, 1H, CHCHN), 7.34, and 7.74 (2d, *J*=8.0Hz, 4H, ArH); $\delta_{\rm c}$ 20.86, 21.94, 22.83 (3xCH₂C), 21.35 (CH₃), 49.15 (2xCH₂N), 60.55 (CHN), 67.05 (2xCH₂O), 127.85, 129.61, 135.93, 144.09 (ArC), 138.31, and 142.58 (*C*H=*C*CH₂); *m*/2 321 (*M*⁺, 8%), 166 (98), 139 (31), 138 (100), 91 (26), 79 (15), 77 (14), and 65 (15). Anal. Calcd. for C₁₇H₂₂NO₃S: C, 63.52; H, 7.21; N, 4.36. Found: C, 62.93; H, 7.28; N, 4.03.

(1R:2S)-(E)-2-[N-Methyl-N-(3-tosyl-2-propenyl)amino]-1-phenyl-1-propanol (**3ag**): $[\alpha]_{D}$ -10.5 (c=1, CHCl₃); mp 122-123 °C (CH₂Cl₂/hexane); ν_{max} (CHCl₃) 3440 (OH), 3050, 1620, 930 (CH=C), 1300, and 1140 cm⁻¹ (SO₂); δ_{H} 0.94 (d, J=6.5Hz, 3H, CH₃CH), 2.22 (s, 3H, CH₃N), 2.43 (s, 3H, CH₃Ar), 2.78 (m, 1H, CHCH₃), 3.05 (br s, 1H, OH), 3.21 (d, J=5.0Hz, 2H, CH₂N), 4.68 (d, J=5.0Hz, 1H, CHO), 6.29 (d, J=15.0Hz, 1H, CHS), 6.82 (dt, J=15.0, 5.0Hz, 1H, CHCH₂), 7.21 (s, 5H, Ph), 7.32, and 7.72 (2d, J=8.0Hz, 4H, p-TolH); δ_{C} 9.58 (CH₃CH), 21.48 (CH₃Ar), 39.24 (CH₃N), 54.05 (CH₂N), 63.79 (CHN), 74.06 (CHO), 125.93, 127.06, 127.92, 142.38 (Ph), 127.52, 129.76, 137.36, 144.19 (p-TolC), 129.76, and 143.58 (CH=CHS); m/z 358 (M⁺-1, <1%), 253 (14), 252 (100), 139 (20), 91 (13), and 77 (10). Anal. Calcd. for C₂₀H₂₅NO₃S: C, 66.82; H, 7.01; N, 3.90. Found: C, 66.47; H, 7.28; N, 3 79.

(2R:3S:6R)-3,4-Dimethyl-2-phenyl-6-(tosylmethyl)morpholine (6a): $[\alpha]_D$ -70.3 (c=0.9, CHCl₃); mp 199-200°C (CH₂Cl₂/hexane); ν_{max} (CHCl₃) 1300 and 1140 cm⁻¹ (SO₂); δ_H 0.62 (d, J=6.6Hz, 3H, CH₃CH), 2.45, 2.47 (2s, 6H, CH₃N and CH₃Ar), 2.54, 2.68 (2d, J=11.3Hz, 2H, CH₂N), 3.05 (m, 1H, CHCH₃), 3.34 (dd, J=14.6, 4.1Hz, 1H, 1xCH₂S), 3.61 (dd, J=14.6, 7.3Hz, 1H, 1xCH₂S), 4.30 (m, 1H, CH₂CHO), 4.77 (d, J=2.1Hz, 1H, CHPh), 6.99 (m, 2H, Ph), 7.29-7.33 (m, 5H, 3H of Ph and 2H of p-TolH), and 7.87 (d, J=8.1Hz, 2H of p-TolH); δ_C 2.13 (CH₃CH), 21.54 (CH₃Ar), 42.50 (CH₃N), 50.87 (CH₂N), 57.57 (CHN), 59.93 (CH₂S), 71.48 (CHCH₂), 80.69 (CHPh), 125.20, 126.78, 128.23, 139.27 (Ph), 127.76, 129.68, 136.97, and 144.49 (p-TolC); m/z 359 (M⁺, <1%), 204 (3), 99 (7), 98 (100), 91 (8), 65 (3), 56 (4), 42 (3) and 41 (6). Anal. Calcd. for C₃₀H₂₅NO₃S: C, 66.82; H, 7.01; N, 3.90. Found: C, 66.56; H, 7.19; N, 3.78.

(E)-3-Azido-1-tosyl-1-propene (3ah): mp 62-63 °C (CH₂Cl₂/hexane); ν_{max} (CHCl₃) 3040, 1620, 960 (CH=C), 2090 (N₃), 1300, and 1140 cm⁻¹ (SO₂); $\delta_{\rm H}$ 2.44 (CH₃), 4.09 (d, J=2.5Hz, 2H, CH₂N), 6.61 (d, J=15.0Hz, 1H, CHS), 6 88 (d, J=15.0, 4.5Hz, 1H, CHCH₂), 7.35, and 7.77 (2d, J=8.0Hz, 4H, ArH); $\delta_{\rm c}$ 21.46 (CH₃), 50.16 (CH₂N),

127.67, 129.91, 136.72, 144.66 (ArC), 132.78, and 138.28 (CH=CHS); m/z 237 (M^+ , 2%), 139 (100), 131 (27), 107 (13), 92 (12), 91 (81), 89 (25), 77 (21), 65 (63), 63 (26), 55 (11), and 51 (12). Anal. Calcd. for C₁₀H₁₁N₃O₂S: C, 50.62; H, 4.67; N, 17.71. Found: C, 51.04; H, 4.94; N, 16.88.

(Z, E)-3-Azido-2-methyl-1-tosyl-1-propene (**3bh**): R_{f} 0.44 (hexane/ether:1/2); ν_{max} (CDCl₃) 3020, 1620 (CH=C), 2080 (N₃), 1300, and 1140 cm⁻¹ (SO₂); δ_{H} (60 MHz, Varian EM-360L) 2.0, 2.1 (2s, 3H, CH₃CCH₂), 2.4 (CH₃Ar), 3.8, 4.5 (2s, 2H, CH₂), 6.2, 6.4 (2s, 1H, CHS), 7.3, and 7.7 (2d, J=8.0Hz, 4H, ArH); δ_{C} 15.60, 22.71 (2xCH₃CCH₂), 21.53 (CH₃Ar), 49.54, 56.78 (CH₂), 127.25, 127.34, 129.84, 129.98, 138.23, 138.71, 144.38, 144.64 (ArC), 127.79, 129.46, 148.32, and 148.71 (CH=C).

(E)-3-Azido-3-methyl-1-tosyl-1-propene (3ch): R_f 0.51 (hexane/ether:1/2); ν_{max} (CHCl₃) 3010, 1610, 960 (CH=C), 2100 (N₃), 1300, and 1140 cm⁻¹ (SO₂); $\delta_{\rm H}$ 1.39 (d, J=6.8Hz, 3H, CH₃CH), 2.43 (s, 3H, CH₃Ar), 4.23 (m, 1H, CHCH₃), 6.54 (d, J=14.9Hz, 1H, CHS), 6.81 (dd, J=14.9, 5.0Hz, 1H, CHCHS), 7.34, and 7.76 (2d, J= 8.0Hz, 4H, ArH); $\delta_{\rm C}$ 18.81 (CH₃CH), 21.52 (CH₃Ar), 56.40 (CHN), 127.72, 129.95, 136.80, 144.68 (ArC), 131.91, and 142.80 (CH=CHS).

3-Azido-1-tosylcyclohexene (3dh): R_f 0.48 (hexane/ether:1/2); ν_{max} (film) 3030, 1630 (CH=C), 2070 (N₃), 1300, and 1140 cm⁻¹ (SO₂); $\delta_{\rm H}$ 1.64, 1.85, 2.19 (3m, 6H, 3xCH₂), 2.42 (s, 3H, CH₃), 4.07 (m, 1H, CHN), 6.88 (m, 1H, CHCHN), 7.32, and 7.72 (2d, J=8.0Hz, 4H, ArH); $\delta_{\rm C}$ 19.10, 22.57, 27.13 (3xCH₂), 21.51 (CH₃), 55.55 (CHN), 128.19, 129.85, 135.25, 144.67 (ArC), 133.07, and 144.67 (CH=CCH₂); m/z 277 (M^+ , <1%), 139 (100), 92 (48), 91 (81), 77 (23), 67 (25), and 65 (75).

I-f(E)-3--Tosyl-2-propenyl]-1,3,5-triazin-2,4,6-triona (3ai): mp 132-134°C (CH₂Cl₂/hexane); ν_{max} (CHCl₃) 3260 (NH), 1680 (C=O), 1300, and 1140 cm⁻¹ (SO₂); $\delta_{\rm H}$ 2.43 (s, 3H, CH₃), 4.56 (d, J=4.0Hz, CH₂), 6.59 (d, J=15.0Hz, 1H, CHS), 6.85 (dt, J=15.0, 5.5Hz, 1H, CHCH₂), 7.33, and 7.71 (2d, J=8.0Hz, 4H, ArH); $\delta_{\rm C}$ 21.59 (CH₃), 42.54 (CH₂N), 127.75, 129.87, 130.04, 136.58, 144.77, 148.02 (ArC, 2xC=O), 133.81, and 137.72 (CH=CHS); m/z 323 (M^+ , 3%), 168 (100), 139 (51), 92 (25), 91 (78), 82 (37), 65 (49), and 56 (21). Anal. Calcd. for C₁₃H₁₃N₃O₅S: C, 48.29; H, 4.05; N, 13.00. Found: C, 48.94; H, 4.19; N, 12.60.

(E)-1,3-Ditosyl-1-propene (3aj): mp 146-147°C (CH₂Cl₂/hexane); ν_{max} (CHCl₃) 3020, 1620, 960 (CH=C), 1310, and 1140 cm⁻¹ (SO₂); $\delta_{\rm H}$ 2.40, 2.46 (2s, 6H, 2xCH₃), 3.91 (d, J=7.5Hz, 2H, CH₂), 6.34 (d, J=15.0Hz, 1H, CHS), 6.74 (dt, J=15.0, 7.5Hz, 1H, CHCH₂), 7.23, 7.35, 7.62, and 7.68 (4d, J=8.0Hz, 8H, ArH); $\delta_{\rm C}$ 21.57, 21.58 (2xCH₃), 57.72 (CH₂), 127.91, 128.22, 129.91, 129.97, 134.56, 136.23, 144.93, 145.37 (ArC), 130.89, and 138.60 (CH=CHS); m/z 350 (M^+ , 20%), 195 (16), 155 (90), 139 (68), 131 (17), 92 (11), 91 (100), and 65 (23). Anal. Calcd. for C₁₇H₁₈O₄S₂: C, 58.26; H, 5.18. Found: C, 57.97; H, 5.06.

Methyl (E)-2-(*Methoxycarbonyl*)-5-tosyl-4-pentenoate (**3ak**): R_f 0.71 (ether); ν_{max} (film) 3030, 1620, 970 (CH=C), 1720 (C=O), 1300, and 1140 cm⁻¹ (SO₂); $\delta_{\rm H}$ 2.43 (s, 3H, CH₃Ar), 2.80 (td, J=7.2, 1.5Hz, 2H, CH₂), 3.54 (t, J=7.3Hz, 1H, CHCO), 3.69 (s, 6H, 2xCH₃O), 6.40 (dt, J=15.0, 1.5Hz, 1H, CHS), 6.88 (dt, J=15.0, 7.0Hz, 1H, CHCH₂), 7.33, and 7.73 (2d, J=8.5Hz, 4H, ArH); $\delta_{\rm c}$ 21.43 (CH₃Ar), 30.15 (CH₂CH), 49.75 (CHCH₂), 52.66 (2xCH₃O), 127.55, 129.77, 137.05, 144.35 (ArC), 133.33, 140.88 (CH=CHS) and 168.18 (C=O); *m/z* 326 (*M*⁺, <1%), 171 (100), 155 (18), 139 (67), 111 (34), 107 (24), 92 (14), 91 (61), 71 (11), 65 (35), 59 (34), and 53 (13).

Methyl 2,2-bis[(E)-3-tosyl-2-propenyl]malonate (7): $R_{\rm p}$ 0.47 (ether); $\nu_{\rm max}$ (film) 3030, 1630, 970 (CH=C), 1720 (C=O), 1300, and 1140 cm⁻¹ (SO₂); $\delta_{\rm H}$ 2.43 (s, 3H, CH₃Ar), 2.71 (dd, J=7.5, 1.0Hz, 4H, 2xCH₂), 3.67 (s, 6H, 2xCH₃O), 6.22 (dt, J=15.0, 1.0Hz, 2H, 2xCHS), 6.73 (dt, J=15.0, 7.5Hz, 2H, 2xCHCH₂), 7.33, and 7.71 (2d,

J=8.0Hz, 8H, ArH); $\delta_c 21.57 (2xCH_3Ar)$, 35.33 (2xCH₂), 53.05 (2xCH₃O), 56.46 (CCH₂), 127.71, 129.96, 136.91, 144.64 (ArC), 135.07, 138.64 (2xCH=CHS), and 169.30 (2xC=O); *m/z* 520 (*M*⁺, 1%), 155 (19), 139 (45), 92 (14), 91 (100), 79 (11), 77 (18), 65 (35), and 59 (13).

Methyl 2,5-bis(methoxycarbonyl)-3-(tosylmethyl)adipate (8): R_f 0.50 (ether); ν_{max} (film) 1720 (C=O), 1300, and 1140 cm⁻¹ (SO₂); δ_H 2.16, 2.29 (2m, 2H, CH₂CHCO), 2.45 (s, 3H, CH₃Ar), 2.66 (m, 1H, CHCH₂S), 3.25 (dd, J=15.0, 6.0Hz, 1H, 1xCH₂S), 3.51 (m, 2H, 1xCH₂S and CH₂CHCO), 3.69, 3.72, 3.73, 3.74 (4s, 12H, 4xCH₃O), 3.93 (d, J=4.0Hz, 1H, CHCHCO), 7.37, and 7.78 (2d, J=8.0Hz, 4H, ArH); δ_C 21.51 (CH₃Ar), 31.00 (CH₂CO), 31.63 (CHCH₂S), 49.43, 52.99 (2xCHCO), 52.56, 52.60, 52.61, 52.63 (4xCH₃O), 57.17 (CH₂S), 127.97, 129.85, 136.17, 144.79 (ArC), 168.06, 168.14, 168.87, and 168.97 (4xC=O); m/z 428 (M⁺-30, <1%), 396 (M⁺-62, 1), 303 (25), 271 (28), 239 (39), 179 (63), 139 (55), 92 (22), 91 (100), 65 (44), 59 (71), and 55 (20).

Synthesis of γ -Functionalized Allyl Sulfones. General Procedure. A mixture of compound 2 or 3 (0.5 mmol) and nucleophile or base (see Table 3) in the corresponding solvent (*ca.* 5 ml) was stirred at the temperature and for the time shown in Table 3. After extractive work-up compounds 4 were isolated and purified as above.

(Z,E)-1-Bromo-1-methyl-3-tosyl-1-propene (4ca): $R_{\rm f}$ 0.52 (hexane/ether:1/2); $\nu_{\rm max}$ (film) 3070, 1655 (CH=C), 1300, and 1140 cm⁻¹ (SO₂); $\delta_{\rm H}$ (of Z-isomer) 2.27 (s, 3H, CH₃CBr), 2.45 (s, 3H, CH₃Ar), 3.96 (d, J=7.3Hz, 2H, CH₂S), 5.77 (t, J=7.3Hz, 1H, CHCH₂), 7.34, and 7.76 (2d, J=8.0Hz, 4H, ArH); $\delta_{\rm C}$ (of Z-isomer) 21.54 (CH₃Ar), 28.92 (CH₃CBr), 59.10 (CH₂S), 116.11 (CHCH₂), 128.28, 129.61, 135.46, 144.73 (ArC), 131.13 (CBr); m/z 209 (M^{+} -Br, 27%), 135 (68), 133 (69), 92 (52), 91 (68), 89 (23), 65 (68), 63 (21), and 53 (100).

(Z)-1-Azido-3-tosyl-1-propene (4ah): mp 81-82 °C (hexane/ether); ν_{max} (CHCl₃) 3010, 1630, 960 (CH=C), 2100 (N₃), 1300, and 1140 cm⁻¹ (SO₂); $\delta_{\rm H}$ 2.45 (s, 3H, CH₃Ar), 3.86 (dd, J=7.8, 1.0Hz, 2H, CH₂S), 4.91 (q, J=7.8Hz, 1H, CHCH₂), 6.39 (dt, J=7.8, 1.0Hz, 1H, CHN), 7.35, and 7.78 (2d, J=8.0Hz, 4H, ArH); $\delta_{\rm C}$ 21.56 (CH₃Ar), 53.59 (CH₂S), 105.36, 135 57 (CH=CHN), 128.47, 129.52, 132.70, and 144.75 (ArC); *m*/z 237 (*M*⁺, 1%), 155 (14), 92 (37), 91 (100), 89 (21), 65 (52), 63 (20), and 54 (13). Anal. Calcd. for C₁₀H₁₁N₃O₂S: C, 50.62; H, 4.67; N, 17.71. Found: C, 50.96; H, 4.82; N, 17.53.

(Z,E)-1-Azido-1-methyl-3-tosyl-1-propene (4ch): R_f 0.50 (hexane/ether:1/2); ν_{max} 3010, 1610 (CH=C), 2100 (N₃), 1300, and 1140 cm⁻¹ (SO₂); δ_H (of Z-isomer) 1.96 (s, 3H, CH₃CN), 2.45, (s, 3H, CH₃Ar), 3.82 (d, J=7.8Hz, 2H, CH₂), 4.75 (m, 1H, CHCH₂), 7.34, and 7.76 (2d, J=8.0Hz, 4H, ArH); δ_C (of Z-isomer) 18.20 (CH₃CN), 21.60 (CH₃Ar), 54.50 (CH₂), 102.20 (CN), 128.50, 129.50, 136.00, 144.60 (ArC), and 139.30 (CHCH₂)); m/z 251 (M^+ , 1%), 155 (28), 139 (42), 135 (29), 133 (27), 92 (22), 91 (100), 68 (61), 65 (43), and 42 (45).

(Z)-1-Bromo-3-tosyl-1-propene (4aa): $R_t 0.40$ (hexane/ether:1/5); ν_{max} (film) 3070, 3040, 1615, 775 (CH=C), 1300, and 1140 cm⁻¹ (SO₂); δ_H 2.45 (s, 3H, CH₃), 4.03 (d, J=7.5Hz, 2H, CH₂), 6.23 (dd, J= 7.5, 7.3Hz, 1H, CHCH₂), 6.49 (d, J=7.3Hz, 1H, CHBr), 7.34, and 7.77 (2d, J=8.0Hz, 4H, ArH); δ_c 21.62 (CH₃), 57.27 (CH₂), 116.09, 122.07 (CH=CHBr), 128.41, 129.75, 135.30, and 144.98 (ArC); *m*/z 276 (*M*⁺ +1, 5%), 274 (*M*⁺-1, 5), 195 (27), 155 (35), 149 (17), 139 (100), 121 (29), 119 (40), 91 (94), and 55 (38).

(Z)-3-Tosyl-1-propenyl acetate (4ac): R_f 0.51 (hexane/ether:1/5); ν_{max} (film) 3040, 1660, 740 (CH=C), 1750 (C=O), 1300, and 1140 cm⁻¹ (SO₂); $\delta_{\rm H}$ 1 94 (s, 3H, CH₃CO), 2.43 (s, 3H, CH₃Ar), 3.94 (d, J=7.8Hz, 2H, CH₂), 4.95 (td, J=7.8, 6.3Hz, 1H, CHCH₂), 7.19 (d, J=6.3Hz, 1H, CHO), 7.34, and 7.77 (2d, J=8.0Hz, 4H, ArH); $\delta_{\rm C}$ 19.92 (CH₃CO), 21.27 (CH₃Ar), 52.57 (CH₂), 99.54 (CHCH₂), 128.25, 129.32, 135.12, 144.53 (ArC), and 139.27 (CHO); m/z 254 (M^+ , <1%), 212 (M^+ -42, 8), 150 (20), 99 (26), 91 (43), 65 (30), and 43 (100).

(E)-(3-Tosyl-1-propenyl)triphenylphosphonium bromide (4al): mp 220-221 °C (CH₂Cl₂/hexane); ν_{max} (CHCl₃) 3000, 1610, 990 (CH=C), 1300, and 1140 cm⁻¹ (SO₂); $\delta_{\rm H}$ 2.41 (s, 3H, CH₃), 4.87 (d, J=7.0Hz, 2H, CH₂), 6.49 (m, 1H, CHCH₂), 7.34 (d, J=8.0Hz, 2H, 2xp-TolH), 7.5-8.0 (m, 17H, 2xp-TolH and 3xPh), 8.68 (dd, J=21.5, 16.5Hz, 1H, CHP); $\delta_{\rm P}$ 19.18; $\delta_{\rm C}$ 21.58 (CH₃), 59.82 (d, J=19.5Hz, CH₂), 117.22 (d, J=90.0Hz, 3xC₁-Ph), 119.69 (d, J=81.0Hz, CHP), 146.88 (d, J=4.5Hz, CHCH₂), 130.42 (d, J=13.0Hz, 6xC_m-Ph), 133.89 (d, J=10.5Hz, 6xC₆-Ph), 135.32 (d, J=3.0Hz, 3xC_p-Ph), 128.14, 129.95, 135.32, and 145.03 (p-TolH); m/z 459 (M⁺+2, 2%), 278 (39), 277 (100), 262 (36), 246 (30), 199 (22), 183 (57), 123 (34), 91 (21), and 77 (29). Anal. calcd. for C₂₂H₂₆BrO₂PS: C, 62.57; H, 4.88. Found: C, 61.98; H, 4.90.

ACKNOWLEDGMENTS. We thank Lilly S.A. (Spain) and DGICYT (Project no. PB88/0287) Spain, for financial support.

REFERENCES AND NOTES

- (a) Schank, K. in 'Methoden der Organischen Chemie (Houben-Weyl)'; Georg Thieme, Stuttgart, 1985, Vol. E/11. (b) 'The Chemistry of Sulphones and Sulphoxides'; Ed. Patai, S.; Rappoport, Z.; Stirling, C., John Wiley & Sons, New York, 1988.
- 2. Simpkins, N.S. Tetrahedron 1990, 46, 6951.
- (a) Nájera, C.; Yus, M. Tetrahedron Lett. 1987, 28, 6709; (b) J. Org. Chem. 1988, 53, 4708; (c) J. Org. Chem. 1989, 54, 1491; (d) J. Chem. Soc. Perkin Trans. 1 1989, 1387.
- 4. (a) Bordwell, F. G.; Mecca, T. G. J. Am. Chem. Soc. 1972, 94, 5829; (b) J. Am. Chem. Soc. 1975, 97, 127.
- 5. Cuvigny, T.; Hervé du Penhoat, C.; Julia, M. Recl. Trav. Chim. Pays-Bas 1986, 105, 409.
- 6. Ogura, K.; Shibuya, N.; Iida, H. Tetrahedron Lett. 1981, 22, 1519.
- 7. This isomerization was observed in the preparation of 3-bromo-1-tosyl-1-propene (3aa) from dibromide 2a and different bases (see below).
- 8. Eisch, J. J.; Galle, J. E. J. Org. Chem. 1979, 44, 3279.
- 9. The stereochemistry was deduced by 'H NMR (300MHz) according to the signal for H_a (this proton splits into a quartet J=6.5Hz).
- The synthesis of *trans*-cyclopropyl sulfones by reaction of Grignard reagents with (E)-3-bromo-1-(phenylsulfonyl)-1-propene has been carried out by Eisch et al..⁸
- 11. Pohmakotr, M.; Pisutjaroenpong, S. Tetrahedron Lett. 1985, 26, 3613.
- 12. Tanaka, K.; Uneme, H.; Matsui, S.; Kaji, A. Bull. Chem. Soc. Jpn. 1982, 55, 2965.
- 13. The homologous 1,3-bis(phenylsulfonyl)propene, has been also prepared by chlorosulfonylationdehydrochlorination of allyl phenyl sulfone: Pillot, J.-P.; Dunogues, J.; Calas, R. Synthesis 1977, 469
- 14. Masuyama, Y.; Sato, H.; Kurusu, Y. Tetrahedron Lett. 1985, 26, 67.
- 15 Magnus, P. D. Tetrahedron 1977, 33, 2019.
- 16. Determined by NOE experiments. Bordwell^{4a} assigned the opposite stereochemistry to this type of compounds.
- 17. Hatanaka, M.; Himeda, Y., Ueda, I. J. Chem. Soc., Chem. Commun. 1990, 526.
- 18. In the case of compound 2b the solvent was evaporated and isolated as oil.
- 19. When sodium dimethyl malonate was used as nucleophile, the solution of this anion in THF was added to a solution of dibromide 2a in THF yielding compounds 3ak and 7. Compound 8 was obtained when the solution of 2a was added to malonate.